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Abstract —Diflerent perturbation methods for the analysis of non-linear interaction between simul-
tancous buckling modes of nearly symmetric structures are discussed. First, the perturbation
method employed by Budiansky for a single buckling mode. is extended to consider modes inter-
action of a perfect structure, by determining both the slope and the curvature of the biturcated
paths. Itis showa that the solution diverges, when a properly defined parameter which characterizes
the asymmetry of the structure approaches zero, thus preventing to recover results of symmetric
systems. A maoditied perturbation method which permits to surmount this drawback s then sug-
gested ; this method applics only to a class of steuctures and furnishes asymptotic series valid in a
wide region around bifurcation. The two methods are applicd to investigate the post-buckling
behavior of i two-degree-of-freedom system. Finally, a novel perturbation method which follows
to some extent the lines of the Galerkin method and is pirticularly powerful in the investigation of
nearly symmetric systems is presented.

[. INTRODUCTION

Noan-lincar problems, both in statics and dynamics, are often treated with perturbation
techniques which have the advantage of being easy to apply and able to furnish parametric
solutions of the problems (Koiter, 1945; Budiansky, 1974 ; Nayfeh, 1973). The algorithm,
when applied. for instance, to an equation of the type

Lw;iy+eu+euild+ - =0, ()

where L is a lincar operator and ¢, ¢4 arc constants, consists in expressing the state variable
u and the control parameter 4 as a power serics in terms of a perturbation parameter &

u="Cu + 1%+ -

and in determining the coefficients of the series expansion through the solution of a sequence
of linear perturbation equations.

Usually, the series expansion is truncated at the first term which is different from zero.
For instance, in a bifurcation problem where 2 denotes the load. the expansion is truncated
at the linear terms if 4, # 0, or at the quadratic terms if 4, = 0 and 4. # 0. The equilibrium
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Fig. 1. Equilibrium paths: (a) asymmetric system (4, # 0); (b) symmetric system (4, = 0, 4, # 0).

paths of perfect systems shown in Fig. | are correspondingly obtained which are a straight
line (asymmetric structures) or a parabola (symmetric structures) : for imperfect systems a
snapping load 4, is present.

There exists, however, a wide class of problems in which 4, is so small that. for values
of & in the domain of interest, second order terms cannot be neglected in that they strongly
characterize the mechanical behavior of the systems, Their evaluation requires to extend
the analysis one step further at the cost of a remarkable increase of the computational
cflort. Systems obeying this type of behavior are here called ncarly synunctric.

Nearly symmetric systems have deserved little attention in the literature. A number of
references regarding static and dynamic buckling problems can be found in Elishakotf
(1980) where the post-critical behavior of a ane-degree-of-freedom system (Fig. 2a) with
quadratic and cubic non-lincaritics has been analyzed. The non-dimensional parameter
x = k.lk, gives a measure of the asymuncetry of the system which is proportional to the
slope of the equilibrium path at bifurcation (Fig. 2b). For small values of ¥ the system is
nearly symmetric. The equilibrium path of the perfeet system shows that, for displacements
& > 0, the load £ decreases by reaching a minimum and then increases again (4, < 0,
Ay > 0) within a domain ¢ inside which the asymptotic solution is valid. Conscquently, the
cquihbrium paths of the imperfect system exhibit himit points only for sufliciently smali
initial tmperfections (system sensitive to initial imperfections) ; for increasing values of
the imperfections amplitude £ the limit points disappear (system insensitive to initial
imperfections). In conclusion, the mechanical behavior of the system is asymmetric and is
governed by quadratic non-lincaritics in a small neighborhood of the origin while it is
symmetric and is governed by cubic non-lincarities outside this neighborhood. Therefore,
a perturbation analysis truncated at the first order furnishes results which are correct only
around the bifurcation point and are wrong if extrapolated in a wider region,

The system illustrated is characterized by having a single critical mode. However, many
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Fig. 2. Nearly symmetric system: (a) one d.o.f. madel: (b) equilibrium paths.



Interactive buckling in nearly symmetric structures 723

problems which are encountered in practice. manifest a number of buckling modes by
correspondence with the same value of the critical load 4. (interactive buckling).

Interactive problems have been extensively investigated in the past years. The interest
has in particular been focused on the analysis of thin-walled members under compression
which may undergo local or overall buckling {see for example the papers by Byskov and
Hutchinson (1979). Sridharan and Benito (1984). Bradford and Hancock (1984), Benito
and Sridharan (1985), Sridharan and Al (1985), Pignataro et al. (1985), Pignataro and
Luongo (1987), Luongo and Pignataro (1989) and Byskov er al. (1989)] but little attention
has been devoted to nearly symmetric structures.

In this paper we wish to analyze the post-buckling behavior of nearly-symmetric elastic
systems which exhibit several buckling modes and show that some perturbation techniques
lead to inaccurate results.

2. PERTURBATION ANALYSIS OF SIMULTANEOUS BUCKLING MODES

The equilibrium paths of an elastic structure subjected to conservative loads which
exhibits a number of simultaneous buckling modes are determined. First, the standard
perturbation analysis ts applied by following the Budiansky (1974) formulation where the
serics expansion is carried out one step further; then a moditied perturbation method is
presented which is applicable to a particular class of systems. A brief sketch of the two
procedures is presented here; details can be found in Pignataro and Luongo (1988) and
Luongo and Pignataro (1988).

2.1 Srandurd perturbation method

Let us consider a hyperelastic body system subjected to conservative loads char-
acterized by the total potenttal energy functional ®[w; 4], where wis the displacement field
and 4 a parameter governing the external foree ficld acting on it. The cquilibrium condition
15 obtained by requiring the functional d[w; 4] to be stationary with respect to kinematically
admissible displacement ficlds, that is

O[w;d)ow =0 Vow, (3)

where a prime denotes Fréchet differentiation with respect to we.

In buckling problems it is assumed that at a certain critical value 4, of the load factor
4, the state w, belongs to two different equilibrium paths : the fundamental one wy (1), which
is tiken to be known, and the bifurcated path w(4). In general, the fundamental path is no
casier to find than any other path, and in an analytical sense it is known « priori only for
simple cases, However, in many problems, an approximate description of the fundamental
path is suflicient for an adequate estimate of the post-critical behavior,

By introducing the differential state variable (), the bifurcated path can be described
ds

w(i) = wy(A)+u(i). 4)

It is usually convenient to express the function #(2) using the parametric relations
u = u(l). 4 = 4(J) which are assumed to be regular. These relations can then be expressed
through the serics expansion (2), where & = 0 corresponds to bifurcation. By substituting
eqn (4) into (3). by expanding this equation in terms of « and £ starting from « = 0 and
4 = /., respectively, and by using relations (2) we get

G, Lou+ 13 (s + 24, Dy + O} Sut S|+ You = 0, (5)
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By equating separately to zero all terms with the same power of 2. the following perturbation
equations are obtained :

Ol du=0

Oludu = — {24, + D ui}ou
o N b ) N -] L ) ror . 3. 000 Yo ser 1 >
Ol du = =314, Qs+ A O, + 4700, + O u s+ 2,07 w7 + A0 uy ) o, (6)
where

(D: = d)“[w()(;m‘) . ;c]
- d .
& = djd) Bro(4): 4] L

o d e
[‘I’"'[Wn(/-):/.] QA+ [n'u(/-):/.]]_ : (7)

<

i

Analogous positions hold for higher order differentiations. Note that the procedure breaks
down when bifurcation occurs at a limit load (dw,/d4 = ) and therefore this case will be
excluded in the sequel.

Equation (6a) 1s an cigenvalue problem which is assumed to admit the multiple
cigenvalue 4, and the m eigenfunctions v, The first order displacements ficld may therefore
be expressed as a lincar combination with arbitrary coctlicients g, of the m independent
solutions

wy =g, (= 1,2,...,m). ()

After replacing egn (8) into (6b). coctlicients g, are determined by imposing on the second
hand member to be orthogonal to all cigenfunctions r, (Fredholm). This leads to the set of
m equations

Aply e+ 4B =0 (L Lk =120..,m). (9)

which are quadratic in g, and bilincar in 2,, g, where
An//l = (Déul‘ll‘rl.k‘ Bl/( = 2(1):."(‘11‘/(' (l())

By adding to (9) a normalization condition such as, for instance, g, = 1, a sct of p
solutions is obtained where, according to the Bezout theorem, pis real at the most equal
to 2" — 1 and at least equal to one.

By solving eqn (6b), the second order displacements field w, = ¢, + 11, is obtained,
where v, is a particular integral and f§, arbitrary constants which are determined with 4, by
imposing the Fredholm condition on eqn (6¢). The following set of hincar cquations is

obtained :
Ban, /f.} {/;(u,.ﬂ.nl
Il PO QP AL S I
g ]{A: g(u) | ()

where f; and g are known functions and the last equation is a normalization condition
expressing the orthogonality between u, and u.. Equations (11) arc solved for each p-tuple
(u,. 4,) and furnish the second order coefficients f§; and 4. lor cach bifurcated path.

If the system is symmetric, then all coetlicients A, vanish and eqns (9) furnish 2 = 0.
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Coefficients y; remain undetermined at this level and are evaluated with i, from the
solvability conditions of eqns (6¢) which read

QA+ A By, =0 (5,6 1=1,2,....m), (12)
to which the condition u;i; = 1 has to be added. In eqns (12) it is
Aukl = d)é”l',‘vjkv[ + %‘DC""PI v/vk s, ( 1 3)

being u; = w;pety a particular solution of eqn (6b). The coefficients , which are
undetermined at this level may be set equal to zero. Equations (12) furnish 1 € ¢ € 3" —1
real solutions. When initial imperfections are present, eqns (9), (11) and (12) are corrected
by adding an extra term which accounts for the amplitude imperfections £ and for the
corresponding shape [see Pignataro and Luongo (1988)].

The case which is of interest arises when the system is nearly symmetric. In this case
it is A, = O(x) where y is a small parameter and therefore, from eqns (9), itis 4, = O(yx).
The matrix of system (11) is thus ill-conditioned and the second order coefficients f, and
4, tend to infinity, as they are of order O(y ~'). Consequently, results furnished by the series
expansion (2) are valid in a very small neighborhood of the bifurcation point only ; indeed,
for & = O(y). second order terms are no longer a small correction of the first order terms
and the asymptotic series expansion is no more uniformly valid. In addition, for x — 0 the
solution of the asymmetric system diverges, thus preventing the recovery of the solution
relative to the symmetric case which is governed by the set of cubic eqns (12). This tmplics
the loss of the main feature of the perturbation method in that parametric solutions can no
longer be obtained.

It is worthwhile to observe that this drawback arises only in interactive buckling. If
there is only one buckling mode, then uy, = | and eqn (9) furnishes 4, = —A4,,,/B,,.

Equations (11) become
Alll Bll I”l . fl
[ L0 ]{Az}‘{y}‘ (19

which are well conditioned even if 4, — 0. Besides, by expliciting f|, one can see that the
solution approaches that of the symmetric system for y — 0 (Pignataro and Luongo, 1988).
The reason for the different behavior of the solutions of the two problems corresponding
tom > | and m =1 lies in the fact that in the first case, in contrast with single buckling
problems, the number and the directions of the bifurcated paths are not known.

2.2, Modified perturbation method

From previous discussions on the results of the standard method, it appears desirable
to formulate a procedure for nearly symmetric systems which allows one to obtain a solution
valid in a wider region around bifurcation, from which the symmetric solution is consistently
rccovered when y — 0. The following preliminary considerations may guide our reasoning
in finding a correct approach for the solution of the problem:

(a) the post-buckling behavior is always governed by third order terms of the energy
in a suitably chosen region around bifurcation, the amplitude of which depends on y ;

(b) far from bifurcation fourth order terms become dominant within the domain of
interest ;

(c) there exists an intermediate region inside which third and fourth order terms of the
energy are comparable and therefore both are necessary to describe the mechanical behavior
of the system. This implies that in the asymptotic procedure they must appear in the same
order perturbation equation.

SAS 19:6-E
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Our aim 1s achieved if we succeed in describing the structure behavior inside the
transition region. To this end let us assume that all third order terms are small, of order ¥.
that s

O =y b =y (13)
where we define
y =K. (16)

The standard perturbation eqns (6b) are therefore modified by shifting third order terms
to the next order equation. By following the same steps as in the previous cuase, 4, = 0,
u, = 0 are found and the Fredholm conditions are rewritten as

2ttt A A B+ 2k A, = 0, (17)
where .-?,,A. = (f)(."r,r,r,\.. Note that eqns (17) are the same as eqns (12) relative to the symmetric
system with an extra term accounting for the weak asymmetry of the structure. In the
following we shall refer to eqns (17) as maodificd perturbation equations. These equations,
with the normalization condition g, g, = 1, furnish g, and 4. as a function of the parameter
r and thercfore of & The solution ts then written in the form

A=A LAAEE, w= (Ol (18)

Faced with imperfections it is suflicient to add an extra term to egns (17) (Luongo and
Pignataro, 1988).

Equations (17) describe the bifurcated paths in o wide domain around bifurcation,
They are suited to a numerical solution as well as to an asymptotic solution for large values
of v (1.e. in accordance with egn (16), in the neighborhood of bifurcation) and for small
values of & (i, far from bifurcation). In this way the solution can be approximated both
by an extrapolation from the origin, which is valid in a small neighborhood of it and by an
extrapolation starting from a point far away ; the two solutions have then to be matched.

Around bifurcation itis scen that, as g, = O(1), for large vitlues of k we have 4, = O(x).
The problem s therefore governed in this case by the sccond and third term in egns
(17) which characterize the asymmetric behavior. The solution can be determined as a
perturbation of that corresponding to kv = w0 ; performing a number of straightforward
steps, the standard method results relative to the asymmetric structure are recovered.

Far from bifurcation » assumes small values. In this case the problem is governed by
the first two terms of the modified perturbation cquation which describe the symmetric
behavior of the structure. An usymptotic solution can therefore be obtained as a per-
turbation of that corresponding to k = 0. By letting

Ay =ANERAY L = R (19)

the following solution is obtained :

0z

F AR = S (20)

where 1, 49 are solutions of the zeroth order perturbation equations which coincide with
eqns (12) and g, 2% arc obtained by solving a lincar problem. Equation (20b) furnishes
straight fines in the plane of the displacements « which are parallel to those relative to the
symmetric system because of the presence of the constant term ¥, In the limit 3 — 0 for
which the standard procedure fails, the symmetric solution is obtained.

We may conclude that, in the neighborhood of the biturcation. the structure behavior
is described by paths which are near to those of the asymmetric system and successively
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come close to the equilibrium lines of the symmetric structure by remaining far away by a
distance of order y.

It is worth emphasizing thuat the second order displucements ficld u. is zero as a
consequence of the assumption that the third order terms of the energy are small for any
displacements field. Indeed. in the most common cases, the cubic terms of the energy are
small only if displacements coincide with the buckling modes. This renders the modified
perturbation method applicable only to a restricted class of problems.

3. ILLUSTRATIVE PROBLEM

The theory has been applied to investigate the post-critical behavior of the two d.o.f.
system illustrated in Fig. 3a (Luongo and Pignataro, 1988). Let ¢ and 3 be the Lagrangian
parameters of the system measured as shown in Fig. 3b. The total potential energy can be
written as

@ = ko  + k.37 + kAT~ N, 2D
where &, k;, k, are spring constants, N is the vertical load, w the vertical displacement of
its point of application and A the stretching of the extensional spring. From kinematics.
the following non-lincar relations are obtained :

A= J(U+sinHi+sin’ o 22
wo=J(1 -\’,s/l’—rsit‘l: @ ;vsii'x“;"l). 23
Ifinitial imperfections @, F are present, the encrgy (21) is modified as
b =k (p=@) + % (D= + kA~ B) = N(wv =), (24)
where A and i are obtained from (22) and (23) by replacing ¢, 3 with ¢, 7.

By taking the series expansion of eqn (24) up to fourth order terms in ¢ and 3 and
retaining only the bilincar terms @@, 33 in the initial imperfections we obtain

® =3k [0+ 3+ 1@ I+ =19 - AT+ = ho' = Lh8 + 1)~k (0 + 59).

(25)

bz [ ¥4
{a) {b)
N
{ 3 u
% Ao

{
=_ =
2% 2~ ¢

Y Y

Fig. 3. Two d.o.f. model: (a) reference configuration : (b) varied configuration.
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Ineqn (25) k, = k. +1[°k, has been taken in order to make the two critical loads to coincide
and the following non-dimensional parameters have been introduced :

x-'-'-l:kx/lkh /:=A\’[k1 (26)

Note that ® [—¢. 3] = © [¢. 3] whereas @ [p, — ] # ® [0, 3]. The asymmetry of the model
is due to the extensional spring which is responsible for the cubic terms of the energy
proportional to the factor x (0 < 3 < 1). A family of these models is examined. characterized
by different values of y. by first applying the standard method and then the modified
method.

By applying the standard perturbation method (SPM) it is found that the asvmmetric
perfect system (y # 0) exhibits p = 3 post-buckling equilibrium paths depicted in Fig. 4a
in the plane of the Lagrangian parameters:

~ 3 2(_‘,: l]: 2 l 5\ 3
) ) gty
[ <
PEPE A=+ ! £ 2 ,Iv+ SAFE 27
VA 1 =\3 S 271 27 [ 2

1y - !
L=l : R N
\" l_(3> Xs+54(;( )

Prop=0, 3=C0 i=1+(1-4yp37

In the same figure curves .2, .2, .2, ar¢ the lincar approximations of curves . 2¥, 2%, 21,
The symmetric system (x = 0) has instead ¢ = 4 cquilibrium paths represented in
Fig. 4b

S =[2)E0 B = (12" A= 1-(16)5

Sy =48, 3 =0, A=+ (16)3°
71 =0, =2 L= 1+(1/6)2, (28)

Equations (27) and (28) are determined by solving eqns (9), (11) and (12), respectively.
Note that the asymmetric and symmetric systems exhibit a ditferent number of bifur-
cated paths. In addition the solution (27) is unable to represent the behavior of the symmetric
system for y — 0 since second order terms diverge and therefore its validity for small values
of % is limited to a small neighborhood of the bifurcation point.
The modified perturbation method (MPM) has been successively utilized. The relevant
modified perturbation equations read

@ L4
(a) (b)
k78
74
o
V4 74
atan {V2/2) %
AR K %
o D4

Fig. 4. Bifurcated paths: (a) asymmetric system (x # 0): (b) symmetric system (¢ = 0y,
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Fig. 5. Solutions g, (x) to the modified perturbation equations.
O =2 =224+ 4K e = 0
=2 gy =244y + 207 =0
pitps =1, (29)

whose solutions furnish g, (x) and g,(x). Four solutions are obtained for u,(x) and rep-
resented in Fig. S in semi-logarithmic scale. Itis seen that for large values of k, i.e. according
to ¢gn (16). for small values of &, three solutions corresponding to those of the standard
method for asymmetric systems are obtained ; for small values of « (large values of &), the
four solutions furnished by the standard method for symmetric systems are recovered. If
the non-linear equations (29) are solved asymptotically for large or small values of «, the
dashed curves shown in Fig. 5 ure obtained. They are a good approximation of the exact
solution with the exception of a region around k = 1, i.e. & = .

The situation is clearer if the equilibrium paths 2, (i = 1, ..., 4), corresponding to the
solutions 1-4 in Fig. 5, are plotted in the ¢, 3 plane and compared with the 2, and &%,
curves (Fig. 6). There are three paths #, starting from the bifurcation point whose tangents
coincide with curves #,; however they rapidly change direction and become parallel to

3 o
-5 —

Fig. 6. Bifurcated paths by modified (MPM) and standard (SPM) perturbation methods.
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Fig. 7. Eguilibriam paths for perfect (5 0) and imperfect (7 0.03) system.

paths /', of the symmeteie system. In addition, a secondary biturcation point manifests
itself on the intersection of curves #, and .#2,. This point cannot obviously be determined
by the standard method, unless secondary bifurcations are scurched explicitly along all
bifurcated paths. Far from bifurcation the equilibrium curve £, also approaches a path of
the symmetric system.

Distances between parallel paths are found to be proportionat to y so that, as the
asymmetry approaches zero, paths # and /" and the bifurcation points tend to coincide.
Thas clarifies why three equilibrium curves of the asymmetric system apparently split into
four,

In concluston, however small the asymmetry parameter y s, provided it is different
from zero, the behavior around the bifurcation point is of the asymmetric type but it
changes rapidly approaching that of the symmetric system. This explains why extrapolations
from the origin are not cffective.

A comprehensive picture of the perfect and imperfect system is shown in Fig, 7 where
both standard and modified perturbation methods have been employed for comparison.
Curves #,, A.. A, corresponding to the perfect system have been plotted. In addition,
paths corresponding to some particular shapes of initial imperfections with amplitude & =
J @ +3% = 0.05 are shown. These paths have been obtained in closed form in the SPM
mcthod and by solving the relevant equations through the Newton -Raphson procedure in
the MPM mecthod. It is apparent that the smaller the value of g the more rapidly the two
familics of MPM and SPM curves diverge.

4. AN ALTERNATIVE GALERKIN PERTURBATION APPROACH

The moditied perturbation method has served to overcome problems arising when the
standard perturbation technique is employed to solve nearly symmetric systems : however,
as already stated in Section 2.2, it can only be applied to a particular class of structures.
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For this reason. it is more convenient to adopt an alternative approach by following
the steps outlined in Byskov and Hutchinson (1979) and Sridharan and Benito (1984). This
method. which in many respects is similar to the Koiter original formulation, is more
general in that it allows small differences among the buckling loads to be taken into account
and, besides, it does not present the drawbacks of the standard method.

The idea of the Galerkin perturbation method (GPM) consists of expressing the
displacements field in the form

-
=
[
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+
T -
It
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where &, are the amplitudes of the m interacting buckling modes v; and ;. t,4 are displace-
ments fields which are determined by solving appropriate perturbation equations as specified
later. Through a Galerkin approach. the following equilibrium equations are obtained :

(l - .—) Git S, Sk s, S+ = & (no sum with respect to i), 30

Ry

where 4 (i = 1.2,....m) is the critical load associated with the buckling mode t,. Equations
(31) can be solved numerically to construct the (4, & : &) path corresponding to a given
initial imperfection @ assumed as a lincar combination i = &¢,.

Note that, in contrast with the standard Galerkin method, the displacements field (30)
is not expressed as a lincar combination of known functions. Indeed, the kinematical
description takes into account the evolution of the structure deformation under increasing
load in the post-critical range by means of the displiacement ficlds ¢, vy, ... In addition,
in the GPM the equilibrium paths are determined by solving the non-lincar equations which
colleet the quadratic and cubic terms all together, thus removing problems pointed out in
Scetion 3 arising in the analysis of nearly-symmetric structures with the SPM.

Difterences and analogies between the GPM and the SPM become apparent on the
basis of the following considerations, relative to the case A, = A, (i = 1,..., m). To make
our comparitive analysis more transparent we start in the two approaches from the same
series expansion (2), by temporarily setting aside eyn (30).

In the SPM eqn (5) is satisticd by forcing each term in &, 2, ... to vanish separately
for uny kinematically admissible du; from this perturbation equations (6) are obtained. By
applying the Fredholm condition to cuch perturbation equation, a relation is established
between coetlicients of the same order of the load and displacement series expansion ; for
instance eqn (9) forges a relationship between 4, and u,, eqn (11) between 4, and u,,
through the arbitrary constants g, and f,, respectively.

In the GPM no such relations are established and eqns (6) are solved for arbitrary
values of the load. Duc to the singularity of the operator @7, the solvability of the equations
is ensured by introducing a constraint on the displacements field du, that is by solving eqns
(6) in a subspace of the kinematically admissible functions. By insisting, for instance, that
;. 1, ... be orthogonal to cach buckling mode ¢, through a positive definite bilincar
operator T, Tr,u, = 0, ..., it must be in eqns (6) Trdu = 0. We now observe that, in virtue
of eqn (8), eqn (6b) admits the solution

Wy = p e, + A e, (32)
where ¢, and ¢ are solutions of the variational problems

Ol 0u= —® v,r,0u

ety

drr0u = =200, 0u, (33)

ctia

under the conditions
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-d

Tr,ou=0 (k=1,2.....m). (34

Equations (33) and (34) can be solved through a Lagrange multiplier technique. In contrast
with the SPM. the coefficient 4, in eqn (32) ts undetermined.

It is worth noticing that in this approach the orthogonality condition plays a fun-
damental role in that it ensures the solvability of the problem. On the contrary, in the
Budiansky procedure, it serves as a normalization condition only.

At this stage of the procedure. if one substitutes eqn (8) for «,, eqn (32) for u. etc.
into (2a) the series expansion (30) is obtained. if one poses fu, = &, and takes from egn
(Zb) I;E = /;.—;.c.

By introducing u,. u, etc. into eqn {5). the equilibrium equation is satisfied for any du
orthogonal to ¢, (1 = 1,.... m). By requesting the equation to be satisfied for du = ¢, also.
the equilibrium equations (31) are finally obtained in the modes with amplitudes &, = g,
and in the load parameter A — 4, = 4, &+ - - The last step of the method formally coincides
with a procedure of the Galerkin type where the function u is expressed through eqn (30)
and the test function du as a variation of the terms linear in & only, du = v, 0&,. Indeed,
higher order terms in £ appearing in du do not play any role in egn (5), due to the particular
choice of .. u..

Finally, we want to show how the GPM can advantageously be utilized in the analysis
of nearly symmetric systems, The basic idea consists of expressing all quantitics as a
perturbation of those of an arbitrarily chosen symmetric system through a serics expansion
in terms of the asymmetry parameter . It is obviously convenient to choose the symmetric
system in such a way as to make the solution of the problem as simple as possible. By
proceeding in this way the total potential energy and the displacements field arc written as

®u:d:y] = O A+ 4D 4] +0x )
u(y) = u’ +xi+0(x?), (35)

where @, = ®(u, 43 0), 1 = 1(0), ® = (AO/dY), - o, 1 = (/Y - o-
The cigenvalue problem (6a) now furnishes the solution

wy = (v + 40, (36)

-

where ¢! are m simultancous buckling modes of the symmetric system ®. 0’31 = 0 and the
corrections £, are solutions of the problem

&5 0u = —Olon, 37)
under the auxiliary conditions
Te du=0 (k=12....m). (38)
The sccond order displacements field is now
uy = g (e + %8, + A el + ). (39

where ¢2 and ¢} are the secondary modes of the symmetric system which satisfy eqns (33,
(34) whereas the corrections 7, and £,; are determined by solving the variational problems
D400 = = 2ADLeM) + Do (07F, +07)]ou
N + ” "o~ N
D Fiou = = 2[00 + b FJou, (40)
under the constraints (38).

In conclusion, once the displacements of the symmetric system have been determined.
the corresponding corrections which characterize the nearly symmetric system are evaluated
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by solving a sequence of linear problems where the stiffness operator is the simpler one of
the symmetric structure. Then the non-linear equilibrium equations as previously illustrated
are derived.

5. CONCLUSIONS

The non-linear interaction between several buckling modes in nearly symmetric struc-
tures has been investigated. The interest has been focused on a perturbation method
capable of correctly describing the non-linear equilibrium paths of the perfect and imperfect
structures. It has been shown that the standard perturbation method formulated by Budi-
ansky fails whenever a small parameter y which describes the asymmetry of the system
approaches zero. thus preventing the recovery of the solution of the symmetric system. This
drawback can be overcome for a restricted class of structures by shifting cubic terms which
are responsible for the asymmetry behavior from second order to third order perturbation
equations.

A system with two degrees of freedom has served to explain the problem and to show
the role played by post-bifurcated paths in the description of the mechanical behavior of
the structure.

An alternative method which follows the Galerkin approach has then been discussed
by showing differences and analogies with the standard method. It is seen that the Galerkin
method is more general and does not exhibit the drawbacks of the standard method in that
the load-displacements law is determined by solving equations where all non-linearities of
the problem appear at the same level. The method can then be specialized to analyze nearly
symmetric structures by considering the actual system as a perturbation of a properly
chosen symmetric system. In this way, the displacement fields are obtained by solving lincar
equations where the stifTness operator is the simpler onc of the symmetric system.
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