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Abstrllct -Diffcrent perturl1ation methods for thc analysis of nlm-lincar interaction I>ctwccn simul­
tancous l1uckling modes of nearly symmctric slructurcs arc discussed. First, the pcrlurl1ation
method employed hy Budiansky for a single huck ling mode. is nlended to consider modcs inl<:r­
actilln of .1 perfect structure. hy determining hoth lhe slope and the curvature of lhe hifurcated
paths. It is shownlh'lt the solution diverges. when a properly dc/ined paramcter which charactcrizes
the asymmetry of the strueture 'Ipproaches zero, thus prevcnling to recI"'cr results of syllllnetric
systcms. A moditied perturhation method which permils to surmount this drawhack is then sug­
gestcd; this mel hod applies only to a class of slructures and furnishes asymptotic scncs valid in a
widc rcgion around hifurcation. Thc two mcthods arc applicd to invcstigate thc post-huckling
I>chavinr of a two-degree-of-frccdom systcm. Finally. a novel perlurhation mClhod which follows
to somc clttcnt the lines uf the Galcrkin method and is particularly puwcrful in lhc invcstigationof
nearly symmetric systcms is presentcd.

I. INTRODUCTION

Non-linear problems, both in statics and dynamics, arc often treated with perturbation
techniques which have the advantage of being easy to apply and able to furnish parametric
solutions of the problems (Koiter, 1945; Budiansky. 1974; Nayfeh, 1973). The algorithm.
when applied. for instance, to an equation of the type

( I )

where L is a linear operator and C!. CJ arc constants, consists in expressing the state variable
II and the control parameter ;. as a power series in terms of a perturbation parameter ~

II = ~III + !~!II! + ,',

;. = ;'e +~;'I + !~!;.! + ... (2)

and in determining the coefficients of the series expansion through the solution ofa sequence
of linear perturbation equations,

Usually, the series expansion is truncated at the first term which is different from zero.
For instance, in a bifurcation problem where ;. denotes the load. the expansion is truncated
at the linear terms if ;'1 i: 0, or at the quadratic terms if ;., = 0 and ;.! =I: O. The equilibrium
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Fi~. l. Equilinrium path, : (a) a,ymmetric sy,tem (i I ,. 0) : (n) symmetric system (i., = O. i, '" OJ.

paths of perfect systems shown in Fig. I are correspondingly obtained which are a straight
line (asymmetric structures) or a parabola (symmetric structures) : for imperfect systems a
snapping load i., is present.

There exists. however. a wide dass of problems in which i' l is so small that. for values
of ~ in the domain of interest. sel:ond order terms cannot be neglected in that they strongly
characterize the mechanical behavior of the systems. Their evaluation requires to extend
the analysis one step further at the cost of a n:markahle increase of the computational
ctrort. Systems (lheying this type of behavior are here called I/('arly symm('tric.

l':early symmetric systems have deserved little attention in the literature. A number of
references regarding statil: and dynamil: bUl:kling problems can be found in Elishakoll"
(llJXO) where the post-nitical behavior of a one-degree-of·frel:dolll system (Fig. 2a) with
quadratil: and cuhic non-Iinearities has hl:en analyzed. The non-dimensional paramell:r
X. =:: k)k I gives a measure of the asymmetry of the system whidl is proportional to the
slope of the equilihrium path at bifurcation (Fig. 2h). For small values of X the system is
nearly symmetric. The equilibriulll path of the perfect system shows that. for displacements
~ > O. the load i. deneases by readling a minimulIl and then ilKreases again (i. t < O.
)'1 > 0) within a domain ~ inside whidl the asymptotic solution is valid. Consequently. the
equilibrium paths of the imperfect system exhihit limit points only for sullieiently small
initial imperfel:tions (system sensitive to initial imperfections): for inneasing valul:s of
the imperfectillns amplitude !; the limit points disappear (system insensitive to initial
imperfel:tions). In I:ondusion. thl: mel:hanil:al behavior of the system is asymmctril: and is
governed by quadratil: non-linearities in a small neighborhood of the origin while it is
symmetril: and is governed hy I:ubil: non-linearities outside this neighborhood. Therefore.
a perturbation analysis truncated at the lirst order furnishes results which are wrrect only
around the hifurl:ation point and are wrong if extrapolated in a wider region.

The system illustrated is characterized by having a single critil:al mode. However. many

Fig. 2. Nearly symmetric system: (al llne d.ll.r. model: (h) equilibrium paths.
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problems which are encountered in practice. manifest a number of buckling modes by
correspondence with the same value of the critical load ;"0 (interactive buckling).

Interactive problems have been extensively investigated in the past years. The interest
has in particular been focused on the analysis of thin-walled members under compression
which may undergo local or overall buckling [see for example the papers by Byskov and
Hutchinson (1979). Sridharan and Benito (1984). Bradford and Hancock (1984). Benito
and Sridharan (1985). Sridharan and Ali (1985). Pignataro et al. (1985). Pignataro and
Luongo (1987). Luongo and Pignataro (1989) and Byskov et al. (1989)] but little attention
has been devoted to nearly symmetric structures.

In this paper we wish to analyze the post-buckling behavior of nearly-symmetric elastic
systems which exhibit several buckling modes and show that some perturbation techniques
lead to inaccurate results.

~. PERTURBATlOl\ ANALYSIS OF SIMULTANEOUS BUCKLING MODES

The equilibrium paths of an elastic structure subjected to conservative loads which
exhibits a number of simultaneous buckling modes are determined. First. the standard
perturbation analysis is applied by following the Budiansky (1974) formulation where the
series expansion is carried out one step further; then a modified perturbation method is
presented which is appliGtble to a particular class of systems. A brief sketch of the two
procedures is presented here; details can be found in Pignataro and Luongo (1988) and
Luongo and Pignataro (1988).

2.1. 5,'tclIldard pCrll/rhatiof/ II/ctltod
Let us wnsider a hyperelastic body system subjected to conservative loads char­

acteri/ed hy the total potential energy functional (1)[11'; i.]. where II' is the displacement field
and i. a paramcler governing thc external force field acting on it. The equilibrium condition
is ohtaincd by requiring the functional (11[11'; i.1 to be stationary with respect to kinematically
admissible displaccment fields. that is

(3)

whcn: a prime denotes Fr~chet dil1"crentiation with respect to 11'.

In buckling problems it is assumed that at a certain critical value i.o of the load factor
i.. the state II'" bdongs to two dillcrent equilibrium paths: the fundamental one lI'u().). which
is taken to be known. and the bifurcated path II'().). In general. the fundamental path is no
easier to lind than any other path. and in an ~tnalytical sense it is known a priori only for
simple cases. However. in many problems. an approximate description of thc fundamental
path is sullicient for an adequatc estimate of the post-critical behavior.

By introducing the differential state variable u(i.). the bifurcated path can be described
as

ll'(i.) = lI'n().) +u(i.) , (4)

It is usually convenient to exrress the function u(i.) using the panlmetric relations
Ii = u(¢). i. = i.(';) which arc assumed to be regular. These relations can then be expressed
through the series expansion (2). where ¢ = 0 corresponds to bifurcation. By substituting
eqn (4) into (3). by exranding this equation in terms of u and i. starting from u = 0 and
i. = i.e. resrectivcly. and by using relations (2) we get

(5)
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By equating separately to zero all terms with the same power of~. the following perturbation
equations are obtained:

<1>:III <)11 = 0

<1>:u:611 = - {2;.(d>:1II +<1>~"lIi}611

<1>:1/,<)11 = - 3P Id>:II: +;. :d>:11 1+;. ;$:111 + <1>~"IIII1: + ;. Id>;"II; +l (D~'" II; : ()II. (6)

where

<1>: = <1>"[ Il"OUJ ; icl

<i>: = [dd;. <1>"[11'0(;'); ;.]10"
(7)

Analogous positions hold for higher order differentiations. Note that the procedure breaks
down when bifurcation occurs at a limilload (dlro/tV. = x) and therefore this case will be
excluded in the sequel.

Equation «(la) is an eigenvalue prohlem which is assumed ((> admit the multiple
eigenvalue ;'e and the 111 eigenfunctions r,. The first order displacements (ield may therefore
he expressed as a linear combination with arhitrary coellicients Jl, of the 111 indcpendent
solutions

III = 11,1" (i = I. 2, ... ,III). (X)

Arter replacing eqn (X) into (6b), codlicients II, arc tktennined hy imposing on the second
hand member to be orthogonal to all eigenfunctions ,., (Fredholm). This leads to the set of
//I equations

(9)

which arc quadratic in II, and bilinear in ;'1, Jl, where

( I())

By adding to (9) a normalization condition such as, for instance, Jl, II, = I. a set of p
solutions is obtained where. according to the Bezout theorem, p is real at the most eLjual
to 2'" - I and at least equal to one.

By solving eqn (6b), the second order displacements lieklll: = ",,+11,", is ohtained,
where ,." is a particular integral and If, arhitrary constants which are determined with ;.: by
imposing the Fredholm condition on eqn (6e). The following sd of linear equations is
obtained:

( II )

where j~ and g are known functions and the last equation is a normalization condition
expressing the orthogonality between III and II:. Equations (II) arc solved for each p-tuple
(jl" ;'1) and furnish the second order coefficients If, and ;.: for each hifurcated path.

If the system is symmetric, then all coetficients A"k vanish and eqns (9) furnish ;.\ = o.
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Coefficients IJi remain undetermined at this level and are evaluated with ..1. 2 from the
solvability conditions of eqns (6c) which read

(12)

to which the condition IJiIJi = I has to be added. In eqns (12) it is

( 13)

being I/~ = IJ,ILkl'tic a particular solution of eqn (6b). The coefficients P, which are
undetermined at this level may be set equal to zero. Equations (12) furnish I ~ q ~ 3"'-1
real solutions. When initial imperfections are present. eqns (9). (II) and (12) are corrected
by adding an extra term which accounts for the amplitude imperfections .; and for the
corresponding shape [see Pignataro and Luongo (1988)].

The case which is of interest arises when the system is nearly symmetric. In this case
it is Aijk = O(X) where Xis a small parameter and therefore. from eqns (9). it is ..1.\ = O(X).
The matrix of system (11) is thus ill-conditioned and the second order coefficients P, and
;'2 tcnd to infinity. as they are oforder O(X- I). Consequently, results furnished by the series
expansion (2) are valid in a very small neighborhood of the bifurcation point only; indeed,
for ~ = O(X). second order terms are no longer a small correction of the first order terms
and the asymptotic series expansion is no more uniformly valid. In addition. for X-+ 0 the
solution of the asymmetric system diverges. thus preventing the recovery of the solution
relativc to the symmetric case which is governed by the set of cubic eqns (12). This implies
the loss of the main feature of the perturbation method in that p'lrametric solutions ean no
longer be obtained.

It is worthwhile to observe that this drawback arises only in interactive buckling. If
there is only one buckling mode, then ILl = I and eqn (9) furnishes ..1.\ = -AIII/BII'

Equations (II) become

( 14)

which are well conditioned even if A III -+ O. Besides, by expliciting II, one can see that the
solution approaches that of the symmetric system for X-+ 0 (Pignataro and Luongo, 1988).
Thc reason for the different behavior of the solutions of the two problems corresponding
to In > I and m = I lies in the fact that in the first case, in contrast with single buckling
problems, the number and the directions of the bifurcated paths are not known.

2.2. Modified perturbation method
From previous discussions on the results of the standard method, it appears desirable

to formulate a procedure for nearly symmetric systems which allows one to obtain a solution
valid in a wider region around bifurcation, from which the symmetric solution is consistently
recovered when X-+ O. The following preliminary considerations may guide our reasoning
in finding a correct approach for the solution of the problem:

(a) the post-buckling behavior is always governed by third order terms of the energy
in a suitably chosen region around bifurcation, the amplitude of which depends on x;

(b) far from bifurcation fourth order terms become dominant within the domain of
interest;

(c) there exists an intermediate region inside which third and fourth order terms of the
energy are comparable and therefore both are necessary to describe the mechanical behavior
of the system. This implies that in the asymptotic procedure they must appear in the same
order perturbation equation.

SAg 29:6-E
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Our aim IS achil:ved if we succl:ed in describing the structure behavior inside the
transition region. To this end let us assume that all third order terms al'l: small, of order X.
that is

wherl: WI: ddlne

x = I\~.

( 15)

( 16)

The standard perturbation eqns (6b) are therefore modifil:d by shifting third order terms
to the next order equation. By following the same steps as in the previous case, ;, I = 0,
II~ = 0 are found and the Fredholm conditions are rewritten as

( 17)

where ,:f'/k = (T>~'l',l'/rk' Notc that eqns (17) are the same as eqns (12) relative to the symmetric
system with an extra term accounting for the weak asymmetry of the structure. In the
following we shall refer to eqns (17) as lIIocii/iccll'crtlirhafiof/ cI!lIatiol/s. These equations,
with the normalization condition jl,jl, = 1, furnish jl, and }.: as a function of the parameter
I', and therefore of~. The solution is then written in the form

(I S)

Faced with imperfel:tions it is sutlicient to add an extra term to eqns (17) (I,uongo and
Pignataro, llJSS).

Equati~lns (17) desnibe the bifurcated paths in a wide domain around bifurl:ation.
They arc suited to a numerical solution as well as to an asymptotic solution for large values
of h' (i.e. in al:l:tmlanl:e with eqn (16), in the neighborhood of bifurGltion) and for small
values of h' (i.e. far from bifun:ation). In this way the solution can be approxill1;ltcd bolh
by an cxtrapolation from the origin, whidl is valid in a small neighborhood of it and by an
extrapolation starting from a point far away: the two solutions have then to be matched.

Around bifurcation it is seen that, as II, = O( I ), for large values of h: we have).: = O(h:).

The problem is therefore governed in this case by the second and third term in eqns
(17) which characterize the asymmetric behavior. The solution can be determined as a
perturbation of that corresponding to h: =J~ : performing a number of straightforward
steps, the standard method results relative to the asymmetric structure arc recovered.

Far from bifurcation 1\ assumes small values. In this case the problem is governed by
the first two terms of the modilied perturbation equation which describe the symmetric
behavior of the structure. An asymptotic solution can then:fore be obtained as a per­
turbation of that wrresponding to 1\ = O. By letting

( 19)

the following solution is obtained:

(20)

where II;), ).~ arc solutions of the zeroth order perturbation equations which coincide with
eqns (12) and jl,·, i.! arc obtained by solving a linear problem. Equation (20b) furnishes
straight lines in the plane of the displacements II which arc parallel to those relative to the
symmetric system because of the presence of the constant term Xjl,"'. In the limit X. -+ 0 for
which the standard procedure fails, the symmetric solution is obtained.

We may conclude that. in the neighborhood of the bifurcation, the structure behavior
is described by paths which arc ncar to those of the asymmetric system and successively
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corne close to the equilibrium lines of the symmetric structure by remaining far away by a
distance of order X.

It is worth emphasizing that the second order displacements fidd U c is zero as a
consequence of the assumption that the third order terms of the energy are small for any
displacements field. Indeed. in the most common cases, the cubic terms of the energy are
small only if displacements coincide with the buckling modes. This renders the modified
perturbation method applicable only to a restricted class of problems.

3. ILLUSTRATIVE PROBLEM

The theory has been applied to investigate the post-critical behavior of the two d.o.f.
system illustrated in Fig. 3a (Luongo and Pignataro. 1988). Let (p and ;j be the Lagrangian
parameters of the system measured as shown in Fig. 3b. The total potential energy can be
written as

where k ,• k 2• k, arc spring constants, N is the vertical load. II' the vertical displacement of
its point of application and A the stretching of the extensional spring. From kinematics.
the following non-linear relations arc obtained:

.1= J(T+~i~':~):+~~:~;;

II' =I(l-.jl-sin: (P-Sill!,rn.

(22)

(:m

If initial imperfections iji, :T arc present. the energy (21) is modified as

(24)

where L\ and Ii' arc ootained from (22) and (23) by replacing (P, :1 with iji. :"i.
By taking the series expansion or eqn (24) up to fourth order terms in Ip and :J and

retaining only the bilinear terms (juji, :J.:T in the initial imperfections we obtain

(25)

N

z

yy

I

x

(a)

Fig. 3. Two d.o.c. modd: (;1) rclcrencc ..:onfiguration; (b) varied configuration.
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[n eqn (25) k 1 = k~ +I~k J has been taken in order to make the two critical loads to coincide
and the following non-dimensional parameters have been introduced:

(26)

Note that <1> [-cp• .9] = <1> [cp • .9] whereas <1> [(Po -:J] # <1> [CPo .?]. The asymmetry of the model
is due to the extensional spring which is responsible for the cubic terms of the energy
proportional to the factor X. (0 ~ x. ~ I). A family of these models is examined. characterized
by different values of x.. by first applying the standard method and then the modified
method.

By applying the standard perturbation method (SPM) it is found that the asymmetric
perfect system (x. # 0) exhibits p = 3 post-buckling equilibrium paths depicted in Fig. 4a
in the plane of the Lagrangian parameters:

(2)1 2 (1)1 2 (2 I 5)"
rp = 3 ~ ± i i7 x. + 27 ~ .

( 1)12 (2 I 5)
;JI'f.·?!: ,'} = ± 3 ~- 21 X+ 27 (

;.= 1+(1)1 'X."+ I (Sx.-7)~2- 3 c, 54 c,

.1't:({J=O. ,II=~. i.= 1+,;(1-4'1.)(.

(21)

[n the same flgun.: curves .1' I ••1' 2• .!J', are the linear approximations of curves .:Pi . .:I'! ..:Pt.
The symmetric system (x. = 0) has instead If = 4 equilibrium paths representcd in

Fig.4b

Y'u:(P (1/2)12~. ,'1 ± (1/2) 1 ' . I - (I/())~~= = '';. i. =

Y'.l:(P= ~. ,'I = O. i. = 1+(1/6)(

.'J'4: (P = O. ,'I = .;. ;, = I +(1/6)~2. (2X)

Equations (27) and (28) are determined by solving eqns (LJ). (II) and (12). respcctively.
Note that the asymmetric and symmetric systems exhibit a dit1i.:rcnt number of bifur­

cated paths. In addition the solution (21) is unable to represent the bchavior of thc symmetric
system for X -+ 0 since second order terms diverge and therefore its validity for small values
of X is limited to a small neighborhood of the bifurcation point.

The modified perturbation method (M PM) has been succcssivcly utili/cd. Thc rdevant
modified perturbation equations read

(a) ( b)

C/'
'/3

1<

4

Fig. 4. Bifurcated paths: (a) asymmetric system (X '" 0): (hI symmetric 'y,tern 1;( ~ Il).
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(29)

whose solutions furnish III (I() and II!(I(). Four solutions arc obtained for JJ2(K) and rep­
resented in Fig. 5 in semi-logarithmic scale. It is seen that for large values of 1(. i.e. according
to eqn (16). for small values of ~. three solutions corresponding to those of the standard
method for asymmetric systems arc obtained; for small values of I( (large values of ~). the
four solutions furnished by the standard method for symmetric systems are recovered. If
the non-linear equations (29) arc solved asymptotically for large or smalI values of K, the
dashed curves shown in Fig. 5 arc obtained. They are a good approximation of the exact
solution with the exception of a region around I( = I. i.e. ~ = X.

Thc situation is dearer if the equilibrium paths 91, (i = 1•... ,4), corresponding to the
solutions 1·4 in Fig. 5, arc plotted in the <p. [) plane and compared with the 9, and !/'j
curves (Fig. 6). There arc three paths ;~, starting from the bifurcation point whose tangents
coincide with curves .1',; however they rapidly change direction and become parallel to

Fig. 6. Bifurcated paths by modified (MPM) and standard (SPM) perturbation methods.
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paths :/', of the synlllldril: system. In addition, a secondary hifurl:ation point maniksts
itsdf on thl: intersel:tion of l:urws .# I and .11 4' This pointl:annot ohviously he ddermined
by the standard method, unless sel:omlary hifurl:ations arc seardled explil:itly along all
bifurl:ated paths. Far from bifurl:ation the equilihriuml:urve ,:#, also ~Ipproadlesa path of
the symmetril: system.

Distanl:es between parallel paths arc found to he proportional to X so that, as the
asymmetry approal:hes lero, paths .11 and :/ and the hifurl:ation points tend to l:oiIKide.
This darifies why three equilibrium curves of the asymmetric system apparently split into
four.

In conclusion, however small the asymmetry parameter X is, provided it is diflcn:nt
from lero. the behavior around the bifurcatilln point is of the asymmetril: type but it
changes rapidly approaching that of the symmetric system. This explains why e.'(trapolations
from the origin are not cfrel:tive.

A comprehensive picture of the perkl:t and imperkl:t system is shown in Fig. 7 where
both standard and modified perturbation methods haw been employed for l:omparison.
Curves ,#" .#> '#1 l:orresponding to the perfect system have been plolled. In addition.
paths l:orresponding to some partil:lilar shapes of initial imperlcdions with amplitude'; =

iip~ +:F = 0.05 a;e shown. These paths have been obtained in dosed form in the SPM
method and by solving the relevant equations through the Newton Raphson procedure in
the MPM method. It is apparent that the smaller the value of X the more rapidly the two
families of MPM and SPM l:urves diverge.

4. :\;--.J ALTERNATIVE G\LERKIN PERTURB,\TION APPROACH

The modified perturbation method has served to overcome problems arising when the
standard perturbation technique is employed to solve nearly sYlllmetric systems: however.
as aln:ady stated in Section 2.2. it can only be applied to a particular class of structures.
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For this reason. it is more convenient to adopt an alternative approach by following
the steps outlined in Byskov and Hutchinson (1979) and Sridharan and Benito (1984). This
method. which in many respects is similar to the Koiter original formulation. is more
general in that it allows small differences among the buckling loads to be taken into account
and. besides. it does not present the drawbacks of the standard method.

The idea of the Galerkin perturbation method (GPM) consists of expressing the
displacements field in the form

(30)

where ~i are the amplitudes of the m interacting buckling modes l'i and l"l' l"lk are displace­
ments fields which are determined by solving appropriate perturbation equations as specified
later. Through a Galerkin approach. the following equilibrium equations are obtained:

(no sum with respect to i). (31 )

where i Ci (i = 1.2..... m) is the critic.J1load associated with the buckling mode l·,. Equations
(31) can be solved numerically to construct the ().. ~i; ~,) path corresponding to a given
initial imperfection ii assumed as a linear combination Ii = ~l'i'

Note that. in contrast with the standard Galcrkin method. the displacements field (30)
is not expressed as a linear combination of known functions. Indeed. the kinematical
description takes into account the evolution of the structure deformation under increasing
load in the post-critical range by means of the displacement fields 1',/. l'" ••. .. In addition.
in the GPM the equilibrium paths are determined by solving the non-linear equations which
collect the quadratic and cubic terms all together. thus removing problems pointed out in
Section 3 arising in the analysis of nearly-symmetric structures with the SPM.

Dill'crences and analogies between thc GPM and the SPM become apparent on the
basis of the following wnsiderations. relative to the case ;'<1 = .A.c (i = I..... m). To make
our comparative analysis more transparent we start in the two approaches from the same
series expansion (2). by temporarily setting aside elJn (30).

In the SPM eqn (5) is satisfied by forcing each term in ~. ( •... to vanish separately
for any kinematically admissible DII; from this perturbation equations (6) are obtained. By
applying the Fredholm condition to each perturbation equation. a relation is established
between wetlieients of the same order of the load and displacement series expansion; for
instam:e eqn (9) forges a relationship between ;'1 and "I. eqn (11) between ;'1 and ">
through the arbitrary constants JI, and Ii,. respectively.

In the GPM no such relations arc established and eqns (6) are solved for arM/wry
/'(/III(,.~ o(rllc lot/c!. Due to the singularity of the operator (l>~. the solvability of the equations
is ensured by introducing a constraint on the displacements field DII. that is by solving egns
(6) in .1 subspace of the kinematieally admissible functions. By insisting. for instance. that
111' 11.10'" be orthogonal to each buckling mode I'. through a positive definite bilinear
opcrator T. TI'kll1 = 0, .... it must bc in cqns (6) n'.DII = O. We now observe that. in virtue
ofcqn (Xl, cqn «Ib) admits the solution

111 = Jl, Jill'" + "" JI,l',••

where 1'" and 1',. arc solutions of the variational problems

(f>~'1',,1511 = - (1)~'' l',I',JII

(f>~'1',.DII = - 2d(1',1511.

under the conditions

(32)

(33)



~"f _'_

(34)

Equations (33) and (34) can be solved through a Lagrange multiplier technique. In contrast
with the SPM. the coefficient ;'1 in eqn (32) is undetermined.

It is worth noticing that in this approach the orthogonality condition plays a fun­
damental role in that it ensures the solvability of the problem. On the contrary. in the
Budiansky procedure. it serves as a normalization condition only.

At this stage of the procedure. if one substitutes eqn (8) for III. eqn (32) for 1I~ etc.
into (2a) the series expansion (30) is obtained. if one poses ~f.J., = ~, and takes from eqn
(2b) ;I~ = ;'-;'c'

By introducing UI' ll~ etc. into eqn (5). the equilibrium equation is satisfied for any l)1I

orthogonal to l'k (i = L .... m). By requesting the equation to be satisfied for Ju = l"k also.
the equilibrium equations (31) are finally obtained in the modes with amplitudes ~k = ;Pk
and in the load parameter ;. - ;'e = ;'1 ~ + .. '. The last step of the methodjormally coincides
with a procedure of the Galerkin type where the function u is expressed through eqn (30)
and the test function ()u as a variation of the terms linear in ~ only. ()11 = l"()~k' Indeed.
higher order terms in:; appearing in Ju do not play any role in eqn (5). due to the particular
choice of II> II,.

Finally. we want to show how the GPM can advantageously be utilized in the analysis
of nearly symmetric systems. The basic idea consists of expressing all quantities as a
perturbation of those of an arbitrarily chosen symmetric system through a series expansion
in terms of the asymmetry parameter X. It is obviously convenient to choose the symmetric
system in such a way as to make the solution of the problem as simple as possihle. By
proceeding in this way the total potential energy and the displacements liekl arc written as

(1)[u;;. ; xl = «(I,,[U; ;·l + x<I)[II; ;.j + O(X ~)

u(X) = /lo+Xii+O(X~).

where (Ilo = ((J(u. ;.; 0). u lJ = u(O). (II = (cJ«ljcJX)x ~ (I. ii = (i)ujcJx)( _ (I.

The eigcnvaluc problem (6a) now furnishcs the solution

(35)

(36)

where I';' arc m simultaneous buckling modes of the symmetric system «(l~k;r:'{)u = () and the
corrections i"', are solutions of the problem

under the auxiliary conditions

Tv2JlI = 0 (k = I. 2..... m).

The second order displacements lield is now

(7)

(3H)

(39)

where l'~ and l':~ arc the secondary modes of the symmetric system which satisfy eqns (33),
(34) whereas the corrections 1\ and f,. arc determined by solving the variational problems

(40)

under the constraints (3R).
In conclusion, once the displacements of the symmetric system have been determined.

the corresponding corrections which characterize the nearly symmetric system are evaluated
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by solving a sequence of linear problems where the stiffness operator is the simpler one of
the symmetric structure. Then the non-linear equilibrium equations as previously illustrated
are derived.

5. CONCLUSIONS

The non-linear interaction between several buckling modes in nearly symmetric struc­
tures has been investigated. The interest has been focused on a perturbation method
capable ofcorrectly describing the non-linear equilibrium paths of the perfect and imperfect
structures. It has been shown that the standard perturbation method formulated by Budi­
ansky fails whenever a small parameter X which describes the asymmetry of the system
approaches zero. thus preventing the recovery of the solution of the symmetric system. This
drawback can be overcome for a restricted class of structures by shifting cubic terms which
are responsible for the asymmetry behavior from second order to third order perturbation
equations.

A system with two degrees of freedom has served to explain the problem and to show
the role played by post-bifurcated paths in the description of the mechanical behavior of
the structure.

An alternative method which follows the Galerkin approach has then been discussed
by showing differences and analogies with the standard method. It is seen that the Galerkin
method is more gener'll and does not exhibit the drawbacks of the standard method in that
the load-displacements law is determined by solving equations where all non-lincaritics of
the proolem appear at the same level. The method can then be specialized to analyze nearly
symmetric structures by considering the actual system as a perturbation of .\ properly
chosen symmetric system. In this way. the displacement fields arc obtained by solving linear
equations where the stiffness operator is the simpler one of the symmetric system.
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